
AD-A247 515
um ii mi um 111 11 Mil IM 11 j. U r. Jf 111 III ill 11 Ij 1 |(...

Architectural Adaptability
in Parallel Programming
via Control Abstraction

Lawrence A. Crowl Thomas J. LeBlanc

Technical Report 359
January 1991

®

■ ,
92-06319

!HI iiällüUi

UNIVERSITY OF

ROCHESTER
COMPUTER SCIENCE

92 3 To 019

'■'' '.^^ i -i

:-ii"-.ij"/utöd

Architectural Adaptability
in Parallel Programming
via Control Abstraction ! ■■..-^oial

Lawrence A. Crowl Thomas J. LeBlanc

The University of Rochester
Computer Science Department
Rochester, New York 14627

Technical Report 359

January 1991

Abstract

Parallel programming involves finding the potential parallelism in an application, choos-
ing an algorithm, and mapping it to the architecture at hand. Since a typical algorithm
has much more potential parallelism than any single architecture can effectively exploit, we
usually program the parallelism that the available control constructs easily express and that
the given architecture efficiently exploits. This approach produces programs that exhibit
much less parallelism than the original algorithm and whose performance depends entirely
on the underlying architecture. To port such a program to a new architecture, we must
rewrite the program to remove any ineffective parallelism and to recover any lost parallelism
appropriate for the new machine.

In this paper we show how to adapt a parallel program to different architectures using
control abstraction. With control abstraction we can define and use a rich variety of control
constructs to represent an algorithm's potential parallelism. Since control abstraction sep-
arates the definition of a construct from its implementation, a construct may have several
different implementations, each exploiting a different subset of the parallelism admitted by
the construct. By selecting an implementation for each control construct using annotations,
we can vary the parallelism we choose to exploit without otherwise changing the source code.
This approach produces programs that exhibit most of, if not all, the potential parallelism
in an algorithm, and whose performance can be tuned for a specific architecture simply by
choosing among the various implementations for the control constructs in use.

This work was supported by the National Science Foundation under research grant CDA-8822724, and
the Office of Naval Research and Defense Advanced Research Projects Agency under research contract
N00L.14-82-K-0193. The Government has certain rights in this material.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE
1. REPORT NUMBER

TR 359

2. GOVT ACCESSION NO

4. TITLE ('•nd Subim«;

Architectural Adaptability in Parallel
Programming via Control Abstraction

7. AUTHORf«;

Lawrence A. Crowl and Thomas J. LeBlanc

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Computer Science Dept., 734 Computer Studies Blcjg
University of Rochester
Rochester, NY 14627-0226

11. CONTROLLING OFFICE NAME AND ADDRESS

Defense Advanced Research Projects Agency
1400 Wilson Blvd.
Arlington, VA 22209

14. MONITORING AGENCY NAME 4 ADDRESSf//d/Merenr from Controlling Ottice)

Office of Naval Research
Information Systems
Arlington VA 22217

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3. RECIPIENT'S CATALOG NUMBER

5. TYPE 0^ REPORT & PERIOD COVERED

technical repo" t

6. PERFORMING ORG. REPORT NUMBER

8. CONTRACT OR GRANT NUMBERfs;

N00014-82-K-0193

10. PROGRAM ELEMENT, PROJECT. TASK
AREA ft WORK UNIT NUMBERS

12. REPORT DATE

January 1991
13. NUMBER OF PAGES

38
15. SECURITY CLASS, (ot Ihim report)

unclassified

15«. DECLASSI Ft CATION/DOWN GRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (ot (his Report;

Distribution of this document is unlimited

17. DISTRIBUTION STATEMENT (ot the abstract entered in Block 70, II dltterenl from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side it necessary and Identity by block number)

parallel programming; architectural adaptability; control abstraction;
architectural independence; potential parallelism; exploited parallelism;
closures; annotations

20 ABSTRACT (Continue on reverse side II necessary and identity by block number)

(see reverse side)

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE unclassified
SECURITY CLASSIFICATION OF THIS PAGE (Wlten Data Entered)

20. ABSTRACT

Parallel programming involves finding the potential parallelism in an application,
choosing an algorithm, and mapping it to the architecture at hand. Since a typical
algorithm has much more potential parallelism than any single architecture can
effectively exploit, we usually program the parallelism that the available control
constructs easily express and that the given architecture efficiently exploits. This
approach produces programs that exhibit much less parallelism than the original
algorithm and whose performance depends entirely on the underlying architecture.
To port such a program to a new architecture, we must rewrite the program to
remove any ineffective parallelism and to recover any lost parallelism appropriate
for the new machine.

In this paper we show how to adapt a parallel program to different architectures
using control abstraction. With control abstraction we can define and use a rich
variety of control constructs to represent an algorithm's potential parallelism. Since
control abstraction separates the definition of a construct from its implementation, a
construct may have several different implementations, each exploiting a different
subset of the parallelism admitted by the construct. By selecting an implementation
for each control construct using annotations, we can vary the parallelism we choose
to exploit without otherwise changing the source code. This approach produces
programs that exhibit most of, if not all, the potential parallelism in an algorithm,
and whose performance can be tuned for a specific architecture simply by choosing
among the various implementations for the control constructs in use.

1 Introduction

Algorithms generally contain more potential parallelism than any one machine can effec-
tively exploit. Although an algorithm may have an efficient realization on a wide range of
architectures, including vector processors, bus-based multiprocessors, non-uniform memory
access multiprocessors, and distributed memory machines, each class of architecture may
exploit a different subset of the parallelism inherent in the algorithm. When we write a
program, we typically limit consideration to the parallelism in the algorithm thai a given
machine can effectively exploit, and ignore any other potential parallelism. While this ap-
proach may result in an efficient implementation of the algorithm on a given machine, the
program is difficult to tune or port to different architectures, because the distinction be-
tween potential and exploited parallelism has been lost. All that remains in the program is
a description of the parallelism that is most appropriate for our original assumptions about
the underlying machine.

Architectural adaptability is the ease with which programmers can tune or port a program
to a different architecture. Many sequential programs adapt easily to a new architecture
because the source code embeds few assumptions about the underlying machine (other than
that it is von Neumann). Parallel programs, on the other hand, typically embed assumptions
about the effective granularity of parallelism, the mapping of parallelism to processors,
the cost of communication and synchronization, and the distribution of data. When an
architecture violates any of these assumptions, the program must be restructured to avoid
a potentially serious performance degradation. This restructuring can be complex, because
the underlying assumptions are rarely explicit, and the ramifications of each assumption
are difficult to discern. We can measure architectural adaptability by the extent of source
code changes necessary to adapt a program to an architecture, and the intellectual effort
required to select those changes.

In this paper we address one aspect of architectural adaptability for parallel programs:
the ease with which programmers can select the parallelism in an algorithm appropriate for
a given machine. This pctiticular aspect of adaptability is especially important because we
cannot always predict the most efficient parallelization for a given architecture in advance.
In addition, porting to a new architecture may require a significant change in parallelization,
and a drastic change in any source code developed without architectural adaptability in
mind.

Our approach to adaptability requires that a program specify the potential parallelism in
an algorithm that an architectures of interest might exploit. Only a subset of the potential
parallelism will be realized on a given architecture, but the inclusion of additional potential
parallelism in the source code will facilitate future adaptation to another architecture.

A programming system provides architectural independence over a range of architectures
when it automatically selects the exploitation of parallelism for a particular architecture in
that range and the programmer makes no architecture-specific changes. Given the diffi-
culty of achieving true architectural independence, we envi&jon a simple mechanism, such
as annotations, that enables the programmer to select the exploited parallelism without
significant changes to the rest of the source program. Changing annotations will B.ua>''y
suffice to adapt a program to an architecture. Where changes to source code are necessary,

1

we would like to minimize both the number of changes and the effort required to make the
changes.

We are interested in programs written in explicitly parallel programming languages.
These programs use control flow constructs, such as fork, cobegin, and parallel for, to
introduce parallel execution. Since the expression of parallelism in these languages is fun-
damentally an issue of control flow, the control constructs provided by the language can
either help or hinder attempts to express and exploit parallelism.

Given the importance of control flow in parallel programming, it seems premature to
base a language on a small, fixed set of control constructs. In addition, if we are to encourage
programmers to specify all potential parallelism, we must make it easy and natural to do
so; no small number of control constructs will suffice. What is required is a mechanism to
create new control constructs that precisely express the parallelism in an algorithm. Control
abstraction provides us with the necessary flexibility and extensibility.

With control abstraction, programmers can build new control constructs beyond those a
language may provide. Each user-defined control construct accepts as a parameter a body
of code to execute and its execution environment. The implementation of the construct
defines an ordering among different executions of the body of code. For example, using
control abstraction we can define a forall construct that accepts a range of integers and a
body of code to execute for each integer in the range. The semantics of forall could be that
iteration i + 1 may not proceed until iteration i ends, thereby requiring sequential execution.
Alter' tively, the semantics might allow iteration t-|-1 to overlap or even precede iteration i,
admiui. ? parallel execution. Using control abstraction, the user defines the exact semantics
of tin construct, as well as the implementations.

Much like data abstraction, which hides the implementation of an abstract data type
from users of the type, control abstraction hides the °xact sequencing of operations from
the user of the control construct. When the semantics of a construct, such as forall,
admit either a parallel or sequential implementation, the user of the construct need not
know which implementation is actually used during execution. The program will execute
correctly whichever implementation is used.

In general, a control construct defined using control abstraction may have several differ-
ent implementations, each of which exploits different sources of parallelism. Programmers
can choose appropriate exploitations of parallelism for a specific use of a construct on a given
architecture by selecting among the implementations. The definition of a control construct
represents potential parallelism; an implementation of the construct defines the exploited
parallelism. Using annotations, we can easily select implementations without changing the
program and thereby achieve architectural adaptability.

This paper describes how to achieve architectural adaptability using control abstraction.
Section 2 describes some related approaches to architectural adaptability. Section 3 presents
a set of programming language primitives for parallel programming based on control ab-
straction and provides an introduction to using and defining control constructs. Section 4
uses these primitives to build some common parallel control constructs. Section 5 introduces
architectural adaptability via annotations that select among multiple implementations of a
control construct. Sections 6 and 7 bring these notions together in extended examples, de-

veloping parallel programs for Gaussian elimination and subgraph isomorphism. Section 8
discusses the interaction between synchronization and control abstraction. Section 9 sug-
gests a general methodology for parallel programming with control abstraction. Section 10
describes language implementation strategies for control abstraction that achieve execution
efficiency comparable to that of conventional programming languages. Finally, we present
our conclusions in section 11.

2 Related Work

In creating a parallel program, a programmer must decide what parallelism to exploit,
how to map that parallelism to processors, how to distribute data among processors, and
how to communicate between parallel tasks. Researchers have proposed several techniques
that address each of these problems and aid architectural adaptability. In this paper we
focus on the first problem, specifying and exploiting parallelism. Our solution to this
problem is compatible with techniques developed by others to address mapping [Hudak,
1986; Snyder, 1984], distribution [Coffin and Andrews, 1989; Harrison and Notkin, 1990],
and communication [Black et ai, 1986].

Recent approaches to the problem of specifying and exploiting parallelism typically rely
on a general strategy of representing much of the potential parallelism in an algorithm, and
then selecting an appropriate subset. This strategy is a significant departure from earlier
practice, where programs described only the parallelism exploited on a given machine, and
therefore were difficult to adapt to a new architecture.

Parallel Function Evaluation Functional programs have no side effects, so expressions
may be evaluated in any order. As a consequence, we can evaluate all expressions in paral-
lel, and parallelism is implicit in functional programs. There are two sources of parallelism
in function evaluation: parallel evaluation of multiple arguments to a function and lazy
evaluation of the value of a function. Owing to the difficulty of automatically finding and
exploiting the optimal sources of parallelism in a functional program, several researchers
have suggested the use of annotations to specify lazy, eager, parallel, and distributed func-
tion evaluation [Burton, 1984; Halstead, 1985; Hudak, 1986].

PaiAlfl [Hudak, 1986; Hudak, 1988] is a functional language that provides annotations
to select eager evaluation over lazy evaluation, resulting in parallel execution, and to map
expression evaluation to processors. A mapped expression in ParAlfl can dynamically select
the processor on which it executes. An eager expression executes in parallel with its sur-
rounding context. By using a combination of eager and mapped expressions, a programmer
can select the parallelism to be exploited and map it to the underlying architecture. The
use of mapped and eager annotations does not change the meaning of the program, which
in a functional programming language does not depend on the evaluation order. Thus,
ParAlfl achieves a significant degree of architectural adaptability, requiring only changes to
annotations to port a program between architectures. ParAlfl achieves this goal only in the
coatext of functional languages, however. Many of the issues that we must address before
we can achieve architectural adaptability for imperative programs do not arise in functional

programs, including the expression of potential parallelism, the effect of exploiting paral-
lelism on program semantics, and the relationship between explicit synchronization and
parallelism.

Although pure Lisp is functional, most Lisp-based programming languages are imper-
ative. Like PaiAlfl, an imperative Lisp can exploit parallelism in function evaluation by
selecting either lazy or eager (and potentially parallel) evaluation. For example, Multilisp
[Halstead, 1985] provides the function pcall for parallel argument evaluation, and future
for parallel expression evaluation. Qlisp [Goldman et ai, 1990] is similar, but provides
more facilities for the conditional exploitation of parallelism. Unlike Par/Ufl, Multilisp is
an imperative language with assignment. Since parallel execution may affect the order of
assignments, the use of pcall and future to introduce parallelism can affect the semantics
of the program. In particular, a programmer can use future only when certain that it
will not produce a race condition. Halstead advocates a combination of data abstraction
with explicit synchronization and a functional programming style to minimize the extent
to which side-effects and parallelism conflict.

To the extent that only the side-effect-free subset of Multilisp is used, both pcall and
future can be thought of as annotations that select a parallel implementation without af-
fecting the semantics of the program. Like ParAlfl, a side-effect-free Multilisp program can
adapt easily to a new architecture with the addition or deletion of pcall and future. How-
ever, Multilisp was not designed to be used in such a limited fashion. A Multilisp program
that uses side-effects to any significant degree cannot adapt easily to a new architecture,
since exploiting alternative parallelism in the program requires that the programmer un-
derstand the relationship between side-effects and the intended use of pcall or future.

Data Parallelism Data parallel language^ provide high-level data structures and data
operations that allow programmers to operate on large amounts of data in an SIMD fashion.
The compilers for these languages generate parallel or sequential code, as appropriate for
the target machine. Fortran 8x [Albert et ai, 1988] and APL [Budd, 1984] provide oper-
ators that act over entire arrays, which could have parallel implementations. The Seymor
language [Miller and Stout, 1989] provides prefix, broadcast, sort, and divide-and-conquer
operatioiis, which also have parallel implementations. These languages achieve architectural
independence for one class of machine (i.e. vector or SIMD) by providing a set of parallel
operations that have efficient implementations on that class of machine.

The Paralation model [Sabot, 1988] and the Connection Machine Lisp [Steele and Hillis,
1986] support data parallelism through high-level control operations such as iteration and
reduction on parallel data structures. These operations represent a limited use of control
abstraction, demonstrating that it can be used to define data parallelism. Such operations
are not a general solution to the problem of specifying parallelism howe'/er, since parallelism
is defined solely in terms of a particular data structure.

Fixed Control Constructs Explicitly parallel languages typically provide a limited set
of parallel control constructs, such as fork, cobegin, or parallel for loops, which program-
mers use to simultaneously represent and exploit parallelism. If the degree of parallelism

specified using these constructs is not appropriate for a given architecture, the resulting
program is not efficient. In general, the correspondence between the parallelism described
in the program and the parallelism exploited at run time is too restrictive in explicitly
parallel languages; selecting an alternative parallelization often requires almost completely
rewriting programs.

Fortran 8x loosens the correspondence between potential and exploited parallelism with
the do across construct, which has both sequential and parallel implementations. Pro-
grammers use do across to specify potential parallelism, and the compiler can choose
either a sequential or parallel implementation as appropriate. Compilers on different ar-
chitectures may make different choices, thus providing a limited degree of architectural
independence.

The Par language [Coffin and Andrews, 1989] (based on SR [Andrews et al, 1988])
extends the concept of multiple implementations for a construct to user-defined implemen-
tations. Par's primary parallel control construct is the co statement, which is a combination
of cobegin and parallel for loops. The programmer may define several implementations of
co, called schedulers, which map iterations to processors and define the order in which iter-
ations execute. Using annotations, a programmer can choose among alternative schedulers
for co, and thereby tune a program to the architecture at hand.

Any single control construct may not easily express all the parallelism in an algorithm,
however. Languages that depend on a fixed set of control constructs for parallelism limit
their ability to express certain algorithms easily. When the given constructs do not easily
express the parallelism in an algorithm, the programmer must either accept a loss of paral-
lelism, or use the available constructs to express excessive parallelism, and then remove the
excess using explicit synchronization. The former approach limits the potential parallelism
that can be exploited, while the latter approach results in programs that are difficult to
adapt to different architectures. In the particular case of Par, programmers must express
all parallelism with co. There is a temptation to create new parallel control constructs
by embedding synchronization within an implementation of co. This approach changes the
semantics of co however, and leaves a program sensitive to the selection of implementations,
violating the Par assumption that annotations do not change the meaning of the program,

User-Defined Control Constructs The problem with any approach to architectural
adaptability based solely on the selection of alternative implementations of a small fixed set
of control constructs is that our ability to describe potential parallelism is limited to com-
positions of the parallelism provided by the constructs. Chameleon [Harrison and Notkin,
1990] represents a first step towards user-defined control constructs. Chameleon is a set
of C++ classes designed to aid in the porting of parallel programs among shared-memory
multiprocessors. It provides schedulers for tasks, which are a limited form of control ab-
straction. Each task is a procedure representing the smallest unit of work that may execute
in parallel. Schedulers call tasks via procedure pointers. Because Chameleon uses dynamic-
binding in the implementation of schedulers, a compiler cannot implement tasks in-line. In
addition, programmers must explicitly package the environment of the task and pass it to
the scheduler. The resulting overhead is acceptable only when tasks are used to specify the
medium-grain parallelism appropriate to shared-memory multiprocessors.

Data Abstraction > distribution and parallelism play an equally important role in
architectural adaptability. Communication costs vary significantly across architectures, and
the degree of parallelism and the distribution of data among processors determines the need
for communication. Indeed, the primary focus of Par and Chameleon is on the use of data
abstraction to hide data and processing distributions that may vary across architectures.
Likewise, PaiAlfl provides facilities for the distribution of data and computation across
processors. Par and Chameleon provide the minimal control mechanisms needed to support
architectural adaptability via data abstraction; our approach to parallelism via control
abstraction is complementary to their approach to data distribution via data abstraction.

3 Parallel Programrm »g Model

This section introduces a parallel programming model and its notation so that we can
present concrete examples in our presentation. Our parallel programming model relies on
a combination of only four control mechanisms, operation invocation, statement sequenc-
ing, early reply, and first-class closures, to define sequential and parallel control constructs
uniformly. These mechanisms are part of the Matroshka parallel programming model; see
[Crowl, 1988] for additional details. With these mechanisms, programmers may build a rich
variety of control constructs to represent precisely the parallelism in an algorithm.

Operation Invocation By operation invocation, we refer to either procedure invocation
in procedural languages, or to method invocation in object-based languages. In this paper,
we use a procedural notation for operation invocation. Operation invocation is synchronous
with respect to the caller. That is, the caller waits for the result before proceeding. For
example,

power (3, 4)

computes and returns 34. For conciseness, we use a conventional prefix/infix expression
notation for sequential data operations, such as integer addition.

Statement Sequencing A sequence of statements defines a total order on statement ex-
ecutions. Notationally, we separate statements by a semicolon, as in the following example:

n := 3+4; j := 4*5; k := n+j

Early Reply An invocation may reply with a result and then continue executing in
parallel with the caller. The caller waits for a reply, but does not wait for termination of
the operation. Early reply is the sole source of parallelism in Matroshka. This mechanism
is not new [Andrews et al, 1988; Liskov et al, 1986; Scott, 1987], but its expressive power
does not appear to be widely recognized. We denote the value-returning reply statement
with the keyword reply preceding the expression. For example,

reply 8

Replies that return control, but no value, omit the expression. Each operation or closure
may have (and execute) only one reply.

First-Class Closures General control abstraction requires a mechanism for encapsulat-
ing and manipulating the body of a control construct. This code must have access to the
environment that invokes the control construct. Like Lisp [Steele, 1984], Smalltalk [Gold-
berg and Robson, 1983], and their derivatives, we use first-class closures to capture the
code and its environment. Closures may accept parameters and return results. Named
procedures are a form of closure, so all claims about closures ^Iso apply to procedures.

Closures capture their environment at point of elaboration and may affect variables in
their environments that are not visible to the callers of the closures. Closures are reusable.
Programmers may invoke closures any number of times. In addition, closures may execute
concurrently. The model provides no synchronization between multiple invocations of a
closure. Programmers are responsible for ensuring that they invoke closures at the proper
time.

In our notation, the definition of a closure consists of a parameter list within parentheses
followed by a sequence of statements within braces. One of these statements may be the
reply statement. For notational convenience, when a closure takes no parameters, we omit
the parameter list. We also omit the reply when it is the last statement in a closure and
it returns no value. For example, we write a closure that accepts an integer parameter and
returns twice its value as:

(i: integer) { reply 2*i >

This is a similar to a Lisp A-expression. We use a type syntax similar to Pascal, including
reference parameters. The type of this closure is:

closure (i: integer): integer

Given a variable twice that references such a closure, we invoke the closure just as we would
an operation:

twice (4)

As an example of the use of closures in a control construct, consider the for construct
for iteration over an integer range. It takes three parameters: an integer lower bound, an
integer upper bound, and a closure that accepts an integer parameter. The definition (as
opposed to the implementation) is:

define for (lower, upper: integer; work: closure (iteration: integer))

An example of its use is:

for (1, 10, (i: integer > { print i })

Noting the Partial Order of Execution The presence of an early reply in a closure
definition (and also in an operation definition) specifies a partial order of execution, which
admits parallelism. For example, given the closure definition,

(parameter: type) { Sj; ...; s,; reply expr; Sj-, ...; sn }

the statements calling the closure

...; sx; closure (arg); sy; ...

result in the following partial order of execution:

sx —> evaluate arg —> s^ -^ ... -* Si —> evaluate expr
/

\
Sv

The statements 5j . ■ .sn may execute in parallel with statement Sy and its successors.

Two events in the execution of an operation (or closure) are significant, its invocation
and its reply. In describing the partial order provided by a control construct, we specify
the partial order among these events using a set of rules. These rules do not implement
the construct or define complete semantics, they merely state the temporal relationships.
We use I operation to signify the invocation of operation, | operation to signify its
reply, and -♦ to signify that the implementation of the operation must ensure that the
event on the left side precedes that on the right side. We also specify universally quantified
variables in brackets after the rule. Since the invocation of an operation (| operation)
must necessarily precede its reply (j operation), we omit such rules. For example, the
sequential for construct has the following control semantics:

ifor (lower, upper, work) -* J work (lower)
t work (t) -> J work (? + 1) [f : lower < % < upper]
twork (upper) -> ffor (lower, upper, work)

These rules, respectively, are: the first iteration starts after the for starts; the current
iteration replies before the next one starts; and the last iteration replies before for replies.
This set of partial orders is actually a total order — no parallelism is possible.

Conditional Execution Thus far we have presented no mechanism for conditional exe-
cution. We adopt the approach of Smalltalk [Goldberg and Robson, 1983] and depend on
a Boolean type and an if operation that conditionally executes a closure. In our case, the
operation is:

define if (condition: boolean; body: closure ())

I if i true, body) — J body ()
t body () -> | if (true, body)

We invoke this operation just as we would any other. For example, in

if (y>0. < z := x/y })

the assignment executes only when y > 0.

Given the if operation, we can build many other common control constructs. For
example, the while construct may have the following recursive implementation:

implement while (fai closure (' ; baole-u»; "bcdy; closure ())
{ if (test (), -C body (); while (test, body) }) }

For convenience in the remainder of the paper, we introduce two additional sequential
control constructs, if else and repeat. Their implementations in terms of if are:

implement ifelse (condition: boolean; affirm, negate: closure ())
{ if (condition, affirm); if (not condition, negate) }

implement repeat (test: closure (): boolean)
{ if (test (), { repeat (test ())})}

Note that we can pass the closure parameters to ifelse directly to if — we need not create
literal closures for each construct. We expect that compilers will recognize the primitive
control constructs (such as those found in most sequential languages) and generate code for
them directly.

Synchronization We have presented no mechanism for synchronization other than that
implicit in an operation invocation waiting for the reply. We assume that ii^.y languages
based on our model will provide some primitive synchronization mechai?j'im(s). We do
not assume any particular synchronization operations in our examples; atomic memory
accesses, atomic instructions like test-and-set, or higher-level synchronization primitives
are all acceptable.

4 Building Common Control Constructs

In this section we show how to use our mechanisms for control abstraction to build well-
known parallel programming constructs. The techniques we use generalize to implementing
other control constructs.

4.1 Fork and Join

In our first example, we use closures and early reply to implement a fork-and-join control
mechanism similar to that provided in Mesa [Lampson and Redell, 1980]. The fork op-
eration starts the computation of a value, which the join operation later retrieves. This

fork-and-join is similar to a Multilisp future, except that programmers must request values
explicitly with join.1 Its syntax and semantics are:

define type forkjoin;
define fork (var mailbox: forkjoin; work: closure (): integer);
define join (var mailbox: forkjoin): integer

i fork (mailbox, work) —> | work ()
twork () —> Tjoin (mailbox)

These rules state that fork invokes work, and that join waits for the reply from work
before replying. The user must invoke the join after the fork replies:

Tfork (mailbox, work) —> J join (mailbox)

These partial orders permit parallel execution. However, they do not guarantee parallelism
because the rules state no order between the reply from fork and the invocation of work.
The additional order:

| fork (mailbox, work) -> J work ()

which states that fork must reply before invoking work, would guarantee concurrent exe-
cution. We clarify the reason for this omission in section 5.

Assume a power operation that accepts two integers and returns the first argument
raised to the power e;iven by the second argument. We can use the definition of fork and
join to evaluate two invocations of the power operation in parallel.

var mailbox: forkjoin;
var n, sum: integer;
fork (mailbox, { reply power (3, 4) });
n := power (b, 6) ;
sum := n + join (mailbox)

The following implementation of fork and join illustrate the use of early reply and
explicit synchronization to achieve parallelism. This implementation is based solely on
the mechanisms described in section 3, with the addition of atomic Boolean reads and
writes. Busy-waiting synchronizes the two computations. Wc could easily change this
implementation to use semaphores for synchronization and avoid busy waiting.

implement forkjoin = record ready: boolean; result: integer end

implement fork

Our sample definition is somewhat restrictive in that the closure argument may only return intege
We could make our definition more general using some form of generic type facility; doing so is beyond th
scope of this paper.

10

rs.
e

(var mailbox: forkjoin; work: closure (): integer)
{ mailbox.ready := false;

reply; no reply value, caller continues
forkjoin.result := work ();
forkjoin.ready := true }

implement join (var mailbox: forkjoin): integer
{ repeat ({ reply not mailbox.ready }); busy wait
reply mailbox.result }

4.2 Cobegin

Our next example is the cobegin construct, which executes two closures in parallel and
replies only when both have replied.2 Its syntax and semantics are:

define cobegin (workl, work2: closure ())

| cobegin (workl, work2) -»] workl ()
J cobegin (workl, work2) — | work2 ()
tworkl () —► f cobegin (workl, work2)
| work2 () —> t cobegin (workl, work2)

These orders permit but do not guarantee parallel execution. The orders that guarantee
concurrent execution:

J workl C) -♦ twork2 ()
J work2 () -»■ j workl ()

state that cobegin must invoke both closures before waiting on the replies.

Given the above definition, we can use this statement to implement the parallel evalu-
ation of integer powers from the previous example.

var n, m, sum: integer;
cobegin ({ n := power (3, 4) }, { m := power (5, 6) });
sum := n + m

We use a valueless version of our previous definition of forkjoin and closures to build
an implementation of cobegin.

implement cobegin (workl, work2: closure ())
{ var mailbox: forkjoin;

fork (mailbox, workl); work2 (); join (mailbox) >

We could provide a more general n argument cobegin given a language that allows lists as arguments
(e.g. Lisp).

11

4.3 Forall

In our next example we define an iterator over a range of integers, analogous to a parallel
for loop or a CLU iterator [Liskov et ai, 1977].3 Its syntax and semantics are:

define forall
(lower, upper: integer; work: closure (iteration: integer))

| forall (lower, upper, work) -*■ | work (i) [i : lower <i< upper]
i work (z) ^ i work (i + 1) [z : lower < i < upper]
t work (. i) -* j forall (lower, upper, work) [i : lower <i< upper]

These rules state, respectively, that: the forall starts before any iteration; iterations start
in amending order;4 and all iterations reply before forall does. Again, we omit the rule
that guarantees parallelism:

| work (t) -> j work (j) [i,j : lower <i< upper A lower <j< upper]

which says that the implementation would have to start all iterations before waiting on the
reply of any iteration.

We use cobegin and recursion to build a parallel divide-and-conquer implementation of
forall.

implement forall
(lower, upper: integer; work: closure (iteration: integer))

{ if (lower = upper, { work (lower) });
if (lower < upper,

{ middle := (lower + upper) div 2;
cobegin ({ forall (lower, middle, work) },

{ forall (middle+1, upper, work)})>)}

This implementation executes each iteration of forall in parallel, and therefore would
only be appropriate in cases where the granularity of parallelism supported by the architec-
ture was well matched to the granularity of each iteration. Otlorwise. it would be better
to use an alternative parallel implementation that creates a fixed number of tasks, each of
which executes a set of iterations. The degree of parallelism provided by this alternative
implementation is easily changed, but cannot be selected using annotations for operation
implementations alone.

These examples show the power of control abstraction when used to define parallel
control flow mechanisms. Using closures and early reply we can represent many different
forms of parallelism. In particular, we used closures, early reply, and a synchronization
variable to implement fork join. We then used fork join to implement cobegin, and
cobegin with recursion to implement forall.

Unlike CLU, our emphasis is on the separation of semantics and implementation for general control
constructs, rather than the ability to iterate over the values of any abstract type.

This rule is useful primarily when using forall to implement other control constructs.

L2

5 Architectural Adaptability

In implementing an algorithm, we must choose a subset of the potential parallelism to
exploit. There are two reasons why we might want to change the parallelism we actually
exploit.

Tuning: We may not be able to predict a priori those sources of parallelism in an algorithm
that £re most appropriate for an architecture (or a particular class of input values).
Changing an incorrect exploitation of parallelism can be a complex, ad hoc task,
similar to the problem of changing data representations in a program lacking data
abstraction.

Porting: We may wish to port programs from one architecture to another and to vary
the number of processors in use. Since parallel architectures vary widely, differert
implementations of the same program will usually exploit different opportunities for
parallelism. Uncovering and exploiting these opportunities can result in a massive
restructuring of the program.

Our approach uses control abstraction to define many different control constructs. The
algorithm determines the control constructs used to represent potential parallelism; the
architecture determines the implementations used to exploit parallelism.

5.1 Multiple Implementations

Data operations often have multiple implementations. For example, matrix addition has se-
quential, vector, and parallel implementations, each appropriate to different architectures.
We can extend this approach to control constructs as well. Control abstraction permits
multiple implementations for a given control construct. These implementations can exploit
differing sources of parallelism, subject to the partial order constraints of the construct. In
effect, the definition of a control construct represents potential paraHelism; the implemen-
tation defines the exploited parallelism.

Our rules for each of the control constructs in section 4 deliberately left the partial
orders underspecified, so as to admit either a parallel or sequential implementation. We
complete the example constructs in section 4 by providing alternative implementations here.
To distinguish each implementation, we annotate it with a descriptive identifier that follows
the operation identifier. We assume programmers will annotate each implementation of a
control construct with a name that describes the degree of parallelism exploited by the
implementation. For example, our parallel divide-and-conquer implementation of forall
from the previous section would be annotated as follows:

implement forall $DIVIDED (...

whereas the alternative parallel implementation that groups iterations together for execution
would be annotated this way:

implement forall $GR0UPED (...

13

As an example of implementation flexibility, consider a sequential implementation of
forkjoin that computes the result of the join operation first, and then continues.

implement type forkjoin SSEQUENTIAL = record result: integer end

implement fork $SEQUENTIAL
(mailbox: forkjoin; work: closure (): integer)

{ mailbox.result := work() } -- caller waits for work to finish

implement join $SEQUENTIAL (mailbox: forkjoin): integer
{ reply mailbox.result }

This sequential implementation of forkjoin could be used to produce a sequential
impleni^iuation of cobegin. Alternatively, we could modify the implementation of cobegin
to execute the two statements in sequence without the use of forkjoin.

implement cobegin $SEQUENTIAL (workl, work2: closure ())
{ workl (); work2 () }

Although either approach results in a sequential implementation of cobegin, modifying
the implementation of ccbegin has two advantages: the implementation of cobegin would
no longer require an implementation of forkjoin and we would avoid the overhead of
invoking the fork and join operations.

Similarly, we can build a sequential implementation of f orall either by using an embed-
ded sequential implementation of cobegin or by modifing the implementation of forall
to use the sequential for construct. Once again there is an advantage to modifying the
implementation of forall — the for construct has a particularly efficient implementation
based on machine instructions.

implement forall $SEQUENTIAL
(lower, upper: integer; work: closure (iteration: integer))

{ for (lower, upper, work) }

5.2 Selecting Implementations

Once we have multiple implementations for a given control construct, some using varying
amounts of parallelism, we can control the amou , of parallelism we exploit during execution
by selecting appropriate implementations at the point of use. One simple technique for
selecting implementations is program annotations. Each use of a construct can select an
appropriate implementation by placing the corresponding annotation after the operation
identifier in its invocation.5,6 For example,

A reasonable set of default annotations will reduce the coding burden on the programmer. In particular,
we recommend that the default implementation be sequential.

Smart compilers could choose these annotations. The techniques for the automatic selection of different
implementations for sequential data structures [Low, 1976] may apply to choosing implementations for
control constructs. We do not assume such a compiler.

11

power $PARALLEL (3, 4)

computes 34 with a parallel implementation of power.

A wide range of choices for exploiting parallelism are possible by choosing different
implementations of a few predefined constructs (such as forkjoin, cobegin and forall).
When the library of predefined implementations does not provide enough architectural
adaptability, a new implementation may be necessary. However, separating the semantics
of use from the implementation of a control mechanism significantly simplifies the task of
exploiting a different subset of the potential parallelism.

In the following example we illustrate the use of annotations to select a particular
parallelization for Quicksort. There are two potential sources of parallelism we consider.
When the array is partitioned, the search for an element in the bottom half of the array
that belongs in the top half can occur in parallel with a similar search that takes place in
the top half. Similarly, the two recursive calls to Quicksort on each half of the array can
occur in parallel.

var sorting: array [1..SIZE] of integer;
implement quicksort $C0ARSE (lower, upper: integer)
{ var rising, falling, key: integer;

if (lower < upper,
i rising := lower;

falling := upper;
key := sort Ing[lower];
while (

{ cobegin $SEQUENTIAL (
{ repeat ({ rising +:= 1;

reply key >= sorting [rising] }) },
{ repeat ({ falling -:= 1;

reply key < sorting[falling] }) });
reply rising <= falling >,

{ swap sorting[rising] and sorting[falling] });
sorting [lower] := sorting[failing] ;
sorting[falling] := key;
cobegin $PARALLEL (< quicksort (lower, falling) },

{ quicksort (falling+1, upper)})})}

In this particular implementation we chose to r 'he coarse-grain parallelism avail-
able during the recursive calls (using the $PARAL tion to select the parallel imple-
mentation of the second cobegin) and chose not the finer-grain parallelism avail-
able during partition. We could experiment with hue grain parallelism by simply changing
the $SEQUENTIAL annotation to select the parallel implementation of the first cobegin.

Current parallelizing compilers could probably find the fine grain parallelism automat-
ically (there are no overlapping writes to variables), even though this parallelism may not
be useful on many multiprocessors. The more important source of parallelism available in
the recursive calls would be much more difficult, if not impossible, to find automatically.

15

The control constructs of section 4 have several possible implementations. We may
adapt many parallel programs simply by choosing to use different implementations of these
constructs on different architectures.

6 Gaussian Elimination Example

We will use Gaussian elimination (without pivoting) as an extended example of using control
abstraction for architectural adaptability. Gaussian elimination is a well-known algorithm,
has nontrivial synchronization constraints, and admits several different exploitations of
parallelism. Our goal is to create a single source program that represents these different
exploitations, each of which can be selected by an appropriate choice of annotations, and
thereby duplicate previous extensive experience in the development and tuning of parallel
Gaussian elimin?tion on the BBN Butterfly [Crowther et a/., 1985; Thomas, 1985; LeBlanc,
1986; LeBlanc, 1988] without the same substantial effort.

In solving a set of linear equations using Gaussian elimination, we first compute an
upper triangular matrix from the coefficient matrix M, producing a modified vector of
unknowns, which we then determine using back-substitution. Since back-substitution is a
small percentage of the total time required to solve the equations, it was not performed
in any of the earlier experiments, and we will not consider it here. We concentrate on
computing the upper triangular matrix by eliminating (zeroing) entries in the lower triangle
(those entries below the diagonal). To eliminate an entry M,j, we replace row M1 with

Mi - Mjjf*, where Mj is known as the pivot row. However, we cannot perform this
operation until after row Mj is stable, i.e., MJik - 0, V^ < j. In addition, all previous entries
in row i must already be eliminated, i.e., Mhk = 0,VA; < ;'. These two synchronization
constraints limit the amount of parallelism that we can expect to achieve.

We present this example as a sequence of programs derived from the standard sequential
algorithm, reflecting our earlier experiences with this application. Later, in section 9, we
propose a methodology that avoids the intermediate steps in this sequence and proceeds
directly to the final form.

6.1 The First Cut

Our first attempt is based on the standard sequential algorithm for upper triangulation.7

var system: array [1..SIZE] of array [1..SIZE] of float;
for (1, SIZE-1, (pivot: integer)

{ for (pivot+1, SIZE, (reduce: integer)
{ var fraction := system[reduce][pivot] / system[pivot][pivot];

for (pivot, SIZE, (variable: integer)
{ system[reduce][variable]

We choose pivot equations in index order; numerically robust programs choose pivot equations based on
the data.

16

-:= fraction * system[pivot][variable] })})})

One straightforward parallel implementation of this algorithm parallelizes the two inner
loops with forall.8 Section ■ showed that the forall construct has both a parallel and
sequential implementation. By using annotations to select a parallel implementation for
both loops, we create an extremely fine-grain parallel implementation.

var system: array [1..SIZE] of array [1..SIZE] of float;
for (1, SIZE-1, (pivot: integer)

{ forall $DIVIDED (pivot+1, SIZE, (reduce: integer)
{ var fraction := system[reduce][pivot] / system[pivot][pivot];

forall $DIVIDED (pivot, SIZE, (variable: integer)
{ system[reduce][variable]

-:= fraction * system[pivot][variable] })})>)

Vector processors could exploit the parallelism in the inner loop by invoking vector in-
structions, rather than using the parallel implementation of forall. On a vector processor
we would expect our compiler to recognize a $VECT0R annotation and produce vector in-
structions for the innermost loop.9 To port the program to a vector multiprocessor, such
as the Alliant FX, we would use both a parallel implementation for the outer forall and
a vector implementation for the inner forall.

The Butterfly lacks vector processors, and could not profitably exploit the parallelism
in the inner loop. Therefore, we can select an implementation that does not attempt
to exploit fine-grain parallelism by choosing the $SEQUENTIAL annotation for the inner
loop. The resulting program exhibits a series of phases separated by the selection of a
pivot. This was precisely the first program developed in our earlier work [LeBlanc, 1988].
Experimentation with this version of the program highlighted the time processors spent
waiting for other processors to complete each phase. These empirical results led us to
develop an implementation based on the synchronization constraints for the problem.

The original sequential algorithm contains implicit synchronization constraints that
caused us to serialize the outermost loop. The syiichronization constraints for the problem
are that pivot equations must be applied to a given equation in order, and an equation must
be reduced completely before it can be used as a pivot. In our notation, the constraints are:

1 i reduce j -* i k reduce j [i,j,k : I < i < j < size A i < k < size]
t i reduce j -* J j reduce k [i,j, k : 1 < i < j < size A j < k < size]

We can enforce these constraints with explicit synchronization, resulting in the following
program. We use blocking condition variables with wait and signal operations for synchro-
nization.

Iterations of the outermost loop cannot be executed in parallel because of the synchronization constraint
that an equation cannot be used as a pivot until it has been reduced completely.

Ue claim no particular advantage over vectorizing compilers in this example, however this example does
show that control abstraction can represent fine-grain parallelism explicitly.

17

var system: array [1..SIZE] of array [1..SIZE] of float;
var done: array [1..SIZE] of condition;
signal done[l] ;
forall $DIVIDED (2, SIZE, (reduce: integer)

{ for (1, reduce-1, (pivot: integer)
{ wait done[pivot];

var fraction := system[reduce][pivot] / system[pivot][pivot];
forall (pivot, SIZE, (variable: integer)

{ system[reduce][variable]
-:= fraction * system[pivot][variable] }) });

signal done [reduce] })

Note that we cannot derive this particular version of the program from our previous versions
by selecting an appropriate combination of implementation choices for the forall construct.
In addition, we cannot select the use of explicit synchronization in this new program in
tandem with the parallelism we plan to exploit, since explicit synchronization is embedded
in the body of the loop. The fault, however, lies not in our approach, but in our failure
to use the full power of control abstraction. In particular, we did not capture the order in
which we select pivot and reduction equation pairs in a single control construct.

6.2 A New Control Construct

We can define a control construct, triangulate, that takes two parameters: the number
of equations in the system, and the work for each pivot and reduction pair, which in this
case is to reduce a single equation given a pivot. The construct encapsulates all parallelism
and synchronization in selecting pairs of pivot and reduction equations. We encapsulate the
reduction within a closure; its parameters are the indices of the pivot and reduction equa-
tions. The triangulate construct invokes the closure with the appropriate pairings, while
maintaining the synchronization necessary for correct execution. Its syntax and semantics
are:

define triangulate
(size: integer; work: closure (pivot, reduce: integer))

J, triangulate (size, work) -» J work (i. j) [i,j : 1 < i < j < size]
t work(i. j) -* i work C k, j) [i,j,k : I < i < j < size A i<k < size]
t work(i, j) -* \ work (j, k) [i,j,k : 1 < i < j < size A i < k < size]

This construct has several implementations, corresponding to the different exploitations
of potential parallelism discussed above. A sequential implementation of triangulate is:

implement triangulate $SEQUENTIAL
(size: integer; work: closure (pivot, reduce: integer))

{ for (1, SIZE-1, (pivot: integer)
{ forall $SEQUENTIAL (pivot+1, SIZE, (reduce: integer)

{ work (pivot, reduce)})>)}

18

By substituting forall $DIVIDED for fcrall $SEQUENTIAL we get triangulate $PHASED,
which exploits the same parallelism as the earlier phased version of the program. In addition,
we can also substitute f orall $GR0UPED for f orall $SEQUENTIAL to obtain a triangulate
$PHASED_GROUPED.

We exploit the more extensive parallelism based on the problem's synchronization con-
straints with the following implementation:

implement triangulate $SYNCHED
(size: integer; work: closure (pivot, reduce: integer))

■C var done: array [L.size] of condition;
signal done[l];
forall $DIVIDED (2. size, (reduce: integer)

{ for (1, reduce-1, (pivot: integer)
{ wait done [pivot];

work (pivot, reduce) });
signal done [reduce] }) }

This implementation admits more parallelism than triangulate $PHASED, but may have
higher execution overhead because of the need to accommodate synchronization. As ear-
lier, we can substitute forall $GR0UPED for forall $DIVIDED to obtain a triangulate
$SYNCHED_GROUPED.

When rewritten to use triangulate, the fully parallel code to form the upper triangular
matrix looks like this:

var system: array [L.SIZE] of array [L.SIZE] of float;
triangulate $SYNCHED (SIZE, (pivot, reduce: integer)

{ var fraction := system[reduce][pivot] / system[pivot][pivot];
forall $DIVIDED (pivot, SIZE, (variable: integer)'

{ system[reduce][variable]
-:= fraction * system[pivot] [variable] >) })

By selecting an appropriate implementation for triangulate and the forall construct
embedded in its body, we can describe all the previous parallelizations of this problem.
Programmers can select twenty different implementations of this program by varying the two
annotations to select a divide-and-conquer, grouped, sequential, or vector implementation of
forall, and a synchronized divide-and-conquer, synchronized grouped, phased divide-ind-
conquer, phased grouped, or sequential implementation of triangulate. Our experience
has shown that triangulate $SYNCHEP_GRQUPED and forall $SEQUENTIAL is the most
efficient implementation on the Butterfly. We expect that triangulate $SYNCHED_GROUPED
and forall $VECT0R would be the most appropriate for the Alliant. This same program
has been ported to a Sun workstation by selecting triangulate SSEQUENTIAL and forall
$SEQUENTIAL. The key to the adaptability in our solution is the introduction of an algorithm-
specific control construct.

1!)

7 Subgraph Isomorphism Example

This section highlights the interaction of data abstraction and control abstraction. In partic-
ular, we show that data abstractions with embedded control abstractions are a powerful and
adaptable representation of potential parallelism. Our example is subgraph isomorphism.
The problem is to find the set of isomorphisms from a small graph to subgraphs of a larger
graph. We present a generalized form of the algorithm developed for the 1986 DARPA
parallel architecture benchmark [Costanzo et a/., 1986], which is based on Ullmann's se-
quential tree-search algorithm [Ullman, 1976]. The algorithm has four grains of parallelism,
however the benchmark program only exploited one grain. Without a methodology and
language to support architectural adaptability, there was not enough time available during
the benchmark to write the different programs necessary to exploit the different grains.

A graph isomorphism is a mapping from each vertex in one graph to a unique vertex in
the second, such that if two vertices are connected in the first graph then their corresponding
vertices in the second graph are also connected. In subgraph isomorphism, the second graph
is an arbitrary subset of a larger graph.

Our algorithm for finding isomorphisms postulates a mapping from one vertex in the
small graph (a small vertex) to a vertex in the large graph (a large vertex). This mapping
constrains the possible mappings for other small vertices. We then postulate a mapping for
the next small vertex, and constrain mappings based on that postulate. Because each small
vertex we choose may have several possible mappings, we must search each possibility. This
search takes the form of a tree, where nodes at level i correspond to postulated mappings
for small vertex i. The mappings at levels 1 through i - 1 constrain the possible mappings
at level i.

Each node in the tree musi represent the remaining possible mappings for each small
vertex. At the root of the tree, each small vertex may map to any large vertex. The root's
children have a single mapping for the first small vertex, and then several possible mappings
for the remaining small vertices. Tree nodes that have no possible mapping for at least one
small vertex are invalid isomorphisms, and we may prune these nodes from the search tree.
The leaves of the tree will have at most one mapping for each small vertex. Leaves with
exactly one mapping for each small vertex represent complete isomorphisms.

Relative to the search time, initializing the search takes little time. So, we will not
discuss the initialization except to note that some static constraints may eliminate possible
mappings in the root node.

Representation In our representation, each vertex has an integer label, from 1 to the
maximum number of vertices. We represent each graph by an array, where each element
of the array corresponds to a vertex and contains the set of integer labels for the vertex's
immediate neighbors.

implement graph = array of set of integer;
var small.neighbors, large.neighbors: graph

Small vertex 1 connects to the small vertices in small_neighbors[l].

20

We represent tree nodes with an array of sets. Each element of the array corresponds
to a small vertex and the set contains the integer labels of large vertices to which the small
vertex might map.

implement tree.node = array of set of integer;
var node: tree_node

Small vertex 1 may map to any element of node [1].

Searching Possibilities The coarsest grain of parallelism arises when searching among
the various possibilities for a given small vertex. Given a set of possibilities in the set
nodeCcurrent.small], we need to examine each postulated mapping. Using a language
with the typical fixed control constructs, we would write:

implement search (current_small: integer; node: tree.node)
{ forall (1, maxim\im_large, (large.vertex: integer)

{ if (large.vertex in node[current_small],
{ examine(current.small, large.vertex, node) >) > >

When selecting a parallel implementation of forall, we must pay an overhead of starting
each task. Because most possible mappings will be near empty, the if condition is usually
false, and most tasks will immediately terminate. This represents a substantial amount of
wasted effort.

The problem with the above code is that we wish to iterate over the elements of the
set. but the forall forces us to iterate over the representation for the set and then test
for membership. A better approach is to combine data abstraction and control abstraction
and define an iterator for sets, as we would in CLU [Liskov et a!., 1977].10 This enables
us to specify precisely that the parallelism is over actual elements, and not over potential
elements. We define a forall.elements operation that executes a closu10 (or operation)
for each element of the set.

define forall_elements
(members: set of integer; work: closure (member: integer))

j forall.elements (members, work) —> J work (i) [i : i € members]
t work (i) ^ jforall.elements (members, work) [i : i £ members]

Iterators are also useful in the distribution of tasks with data.

Given the f orall.elements operation, we rewrite the search operation as:

implement search (current.small: integer; node: tree.node)
{ forall.elements (node[current.small], (postulate: integer)

{ examine(current.small, postulate, node) }) }

Iterators (or generators) are a limited form of control abstraction intended to support data abstraction.
With iterators, the user of an abstraction can apply an operation to all the elements of an abstract data
type without knowing the representation of the type.

21

This representation is clearer and potentially more efficient, but it requires a mechanism
to define control abstractions that interact with data abstractions in order to build the
iterator. The closure mechanism serves this need.

This grain of parallelism in searching tree nodes is relatively coarse, suitable for multi-
processors and distributed systems.

Examining a Mapping The next task is to examine a single proposed mapping and
propagate the constraints of that mapping. The first task is to enforce the minimal ccii-
straints — the small vertex may map to no other and no other small vertex may map to
the chosen large vertex. Next, we check to see if the incomplete isomorphism is a leaf in
the search. If so, we report the isomorphism,11, otherwise we apply better constraints.

implement examine
(current_small, current.large: integer; node: tree.node)

{ minimal.constraints (current_small, current.large, node);
ifelse (current_small = maximum.small,

{ report_possible_isomorphism (node) },
{ constrain (current.small, current.large, node) }) }

We use two non-trivial constraints, vertex connectivity and vertex distance, to filter
possible mappings. Because these filters only remove elements from the sets of possible
mappings, we may execute them in parallel, which requires atomic element removal. The
filters may leave some map sets empty, in which case no isomorphism is possible for that
node. If we have a valid node, we can choose the next vertex, and search its possibilities.

implement constrain
(current.small, current.large: integer; var node: tree.node)

{ cobegin ({ distance.filter (current.small, current.large, node) },
{ connect.filter (current.small, current.large, node) });

if (no.empty.mapping (node),
{ search (current.small+1, node) }) }

At most, this routine offers two-way parallelism. This is usually not enough, alone,
to effectively exploit modern multiprocessors. However, it can supplement other forms
of parallelism by doubling the number of processes, which often increases the ability of
execution systems to balance computational load. Because both filters modify the node.
a shared-memory architecture is likely to be more effective. On the other hand, when the
filters execute sequentially, the second filter need not examine mappings removed by the
first filter, which reduces the amount of computation. The programmer must decide when
exploiting parallelism here is appropriate and when it is not.

The constraint filters are not complete. They may leave some irvalid isomorphisms at the leaves of the
search tree. A separate check will eliminate these before they are rrtwted.

■22

Distance Filter Two small vertices separated by a distance x cannot map to two
large vertices separated by a distance y > x.12 We rely on two precomputed arrays,
small_distance and large_distance, to retrieve distance information. Using the cur-
rent small vertex and its postulated mapping as one vertex of each pair, we successively
choose each small vertex as the second small vertex and remove those possible mappings
with an inconsistent distance. Using f orall_elements, the opeiation is:

implement distance_fliter
(current.small, current.large: integer; var node: tree_node)

{ forall (1, maximum.small, (other.small: integer)
{ forall.elements (node[other.small], (other.large: integer)

{ if (small.disteince[current.small,other.small]
< large.distance[current.large,other.large],

{ remove.element (other.large, node [other.small]) }
)>)})>

As in the search operation, the if condition quickly terminates many potential tasks.
Because we cannot evaluate the condition in terms of the members of the set alone, we
cannot adopt the earlier solution and fold the test into a simple iterator. However, we can
define a conditional iterator. Conditional iterators accept a condition to test elements as
well as the work to perform on each element if it passes the test. This approach enables us
to evaluate the conditions sequentially, avoiding the overhead of a parallel task for quick
computations; and then create a parallel task for each element that passes the test. The
conditional iterator for in^pger 'ets is:

define forall_e.lems.cond
(members: set of integer;

test: closure (member: integer): boolean;
work: closure (member: integer))

J forall.elems.cond (members, test, work) -»• J test (i) [/: ? e members]
1 test { i) -* \ work (i) [i : i g members A test (i)]
1 work (i) —► | forall.elems.cond (members, test, work)

[i : i € members A test (i)]
t test (i) —► 1 foralj..elems.cond (members, test, work)

[i : i G members A -i test (i)]

This definition leaves room for several different implementations.

Given forall.elems.cond, the distance filter becomes:

implement distance.filter
(current.small, current.large: integer; var node: tree.node)

{ forall (1, maximum.small, (other.small: integer)

Two small vertices can map to large vertices separated by a distance y < x because the isomorphisi
may ignore edges in the large graph that shorten the distance.

23

{ forall_elems_cond (map[other_small],
(other.large: integer)

•C reply small_distance[current_small,other_small]
< large_distemce[current_large,other_large] },

(other_large: integer)
{ remove.element (other.large, map[other_small])})>)}

The conditional iterator is strictly more expressive than a simple iterator. (A constant
true condition yields the semantics of the simple iterator.) The Implementation of the
conditional iterator can exploit parallelism in the work, and not among conditions, which
was not possible with the simple iterator.

Note that in the code above, the body of the forall_elems_cond acts only on the
set used in the forall_elems_cond. We are asking the forall_elems_cond to create
potential parallelism, then ask remove.element to synchronize so that element removal is
atomic. We can eliminate this inconsistency by recognizing that we are removing elements
that meet a condition, and use an operation representing exactly that action. We define a
remove_elements_cond operation that for each element of the set asks a closure if it should
remove the element.

define remove_element_cond
(var members: set of integer;

test: closure (member: integer): boolean)

| remove_element_cond (members, test) -♦ J test (i) [i : i e members]
ttest (?) — j remove_element_cond (members, test) [? : ?G members

Its implementation must synchronize with other operations on the set.

Our final version of distance.f ilter expresses our intent precisely, while leaving a
great deal of latitude in the possible implementations of remove_element_cond.

implement distance.filter
(current.small, current.large: integer; var node: tree.node)

{ forall (1, maximum.small, (other_small: integer)
{ remove_element_cond (&node[other_small],

(other.large: integer)
{ reply small_distance[current_small,other_small]

< large.distanceCcurrent.large,other large]
}) }) >

The potential sources of parallelism are in the forall (medium grain), and in
forall_elems_cond or remove_element_cond (fine grain). The former is appropriate to
shared memory multiprocessors and the latter is appropriate to vector and SIMD machines.

Connectivity Filter Given a postulated mapping, the neighbors of the small vertex can
only map to neighbors of the large vertex \gain, we can use f orall.elements in iterating

24

over the neighbors. We can also remove possible mappings for the neighbors in parallel.
The resulting mapping is the intersection of the possible mappings and the neighbors of the
current large vertex. With the benefit of experience gained above, we can move directly to
an operation for set intersection and assignment.

implement connect_filter

(current.small. current.large: integer; var node: tree.node)
{ forall.elements (small_neighborsCciirrent_small] ,

(other.small: integer)
•C assign_intersection(node[other_small] ,

large_neighbors[current_large] }) >) }

We can leave the degree of exploited parallelism to the implementation of the set inter-
section. Given an appropriate implementation of sets, vector instructions can implement
the intersection. A second potential source of parallelism, appropriate for shared memory
multiprocessors, can be found in f orall.elements.

Control abstraction is a powerful tool for defining representation-independent op-
erations on data. For instance, we can implement assign.intersection with
remove_element_cond.

implement assign.intersection
(var members: set of integer; others: set of integer)

{ remove_element_cond (members, (member:integer)
{ reply not element.of_set (member, others) }) }

Given such a tool for defining operations, we may be tempted to define data abstractions
that provide minimal sets of operations and rely on general control abstraction to implement
more extensive data operations. Unfortunately, when we rely on general control abstraction
to implement data operations, we lose the ability to take advantage of the representation of
data in exploiting parallelism. For example, it is difficult to derive an implementation of set
intersection based on anding bit strings from the above definition of assign intersection
If data abstractions export a wide variety of operations, programmers of implementations
of these abstractions can improve performance by taking advantage of the representation.

Control abstraction encourages data representation-independent programming which
users of abstractions desire for architectural adaptability. Defers of abstractions must be
careful to include many operations, so that emp/emer^ers of abstractions can take advantage
of the representation.

We identified several sources of parallelism in our algorithm. They are appropriate to
distributed, multiprocessor, and uniprocessor machines. Programmers need only choose the
appropriate annotation when adapting the program to a given machine. For example:

the implementation may annotate
of operation the invocation of with any of the annotations
search forall.elements $SEQUENTIAL $GR0UPED $DIVIDED
constrain cobegin $SEQUENTIAL $PARALLEL
distance.f liter forall $SEQUENTIAL $GR0UPED $DIVIDED

remove.elem.cond $SEQUENTIAL $VECT0R
connect.fliter forall.elements $SEQUENTIAL $GR0UPED $DIVIDED

assign.intersection $SEQUENTIAL $VECT0R

Selecting combinations of these annotations provides us with 216 possible implementations
of subgraph isomorphism. Through the use of iterators, conditional iterators, and condi-
tional data operations, this example shows how data and control abstraction interact to
provide powerful mechanisms for representing and exploiting parallelism.

8 Synchronization and Control

The presence of parallelism in a program generally implies the presence of synchronization.
When we introduce parallelism, we must also introduce synchronization. Ideally, we select
synchronization with the same mechanism that exploits parallelism. Parallel programs
exhibit two types of synchronization: data synchronization ensures consistent access to
data by independent threads of control; control synchronization cooTd'ma.tes between threads
created to perform some work in parallel. In particular, synchronization that supports a data
dependence is control synchronization. As in Multilisp [Halstead, 1985], we assume that
data synchronization is embedded in data abstractions. In this section, we show how control
abstraction can enable simultaneous selection of parallelism and control synchronization, as
well as accommodate data dependence.

The technique we use to select parallelism and synchronization simultaneously is to
define control constructs whose semantics (partial orders of execution) include the necessary
synchronization. Each implementation for a construct then embeds the synchronization
appropriate to its exploitation of parallelism. An implementation that does not exploit
parallelism need not include synchronization.

Embedding synchronization in a . .struct limits its applicability, so we must be careful
to select a construct appropriate to the problem at hand. When choosing an existing
control construct that does not provide the necessary synchronization in its implementation,
we must insert explicit synchronization into the work to be performed. Unfortunately,
this commits us to a specific exploitation of parallelism that cannot be changed with an
annotation. The resulting program is more difficult to tune or port. Rather than use
an inappropriate control construct and additional explicit synchronization, the preferred
approach is to build a new construct that encapsulates the correct synchronization.

Embedding Synchronization An interesting example of the use of a control construct
with insufficient synchronization arose in our previous work with Gaussian elimination. An
early version of the program developed at BBN [Thomas. 1985] used the Uniform System

26

parallel programming library [Thomas, 1986]. The Uniform System provides a globally
shared-memory and a set of predefined task generators. Each generator accepts a pointer
to a procedure and executes the procedure in parallel for each value produced by the gener-
ator. Thus, generators are a limited form of control abstraction. The Uniform System pro-
vides generators for manipulating arrays and matrices, including GenOnHalf Array, which
generates the indices for the lower triangular portion of a matrix. The Uniform System
implementation of Gaussian elimination used this generator.

define GenOnHalfArray
(size: integer; work: closure (indexl, indax2: integer))

| GenOnHalf Array (size, work) -+ [work (. i, j) [i, j : 1 < i < j < size]
| work (i, j) -> 1 GenOnHalf Array (size, work) [i,j : 1 < i < j < size]

This generator provides the parallelism of our triangulate construct, but without
the synchronization constraints. As a result, the Uniform System program included explicit
synchronization within the body of the work.13 Gaussian elimination using GenOnHalf Array
looks like this:

var system: array [1..SIZE] of array [1..SIZE] of float;
var pivot.done: array [1..SIZE] of condition;
var element_done: array [1..SIZE, 1..SIZE] of condition;
signal pivot.done [1];
GenOnHalfArray $DIVIDED (SIZE, (pivot, reduce: integer)

{ wait pivot.done [pivot];
if (pivot > 1, { wait element.done[reduce] [pivot-1] });
fraction := system[reduce][pivot] / system[pivot] [pivot];
forall $DIVIDED (pivot, SIZE, (variable: integer)

{ system[reduce][variable]
-:= fraction * system[pivot][variable] })

signal element.done[reduce][pivot];
if (pivot = reduce-1, { signal pivot.done[reduce] }) >)

This implementation uses explicit synchronization to provide the serialization implicit in the
for loop in triangulate $SYNCHED. Given the limited facilities for creating new generators
in the Uniform System, and the existence of GenOnHalf Array, this implementation was a
reasonable one. Nevertheless, a more efficient implementation would have been possible had
the correct control construct been available or easily created. With control abstraction, we
can build constructs that contain the necessary synchronization.

Explicit Versus Implicit Synchronization In the implementation of a control con-
struct, we often have a choice between relying on the synchronization implicit in other
control constructs or using explicit synchronization. There is no single resolution of this

'The actual program used more efficient synchronization than is shown here, but this version accurately
represents the control flow and is consistent with our earlier examples.

choice for all cases. For example, the synchronization implicit in the outer loop of our
phased implementation of Gaussian upper triangulation unnecessarily limits the amount
of parallelism in the program. On the other hand, some of the explicit synchronization
used in the Uniform System program is both expensive and unnecessary. The triangulate
$SYNCHED implementation is a balanced combination of explicit and implicit synchroniza-
tion. It uses explicit synchronization to remove the limit on parallelism imposed by the
phased implementation. It also uses a for loop to serialize the application of pivots to a
single equation, in place of explicit synchronization in the Uniform System program.

Splitting Closures In the above example, we were able to concentrate solely on the
partial order rules to derive a new control construct and embed synchronization within the
construct. We may not always be able to do so. For example, consider a sequential loop of
the form:

for (1, N. (i: integer)
{ statement list 1; x := a[i]; a[i+l] := y; statement list 2 })

This loop has a loop-carried data dependence between iteration i and iteration i + I. We
cannot use f orall to specify parallelism because we would violate the dependence. One
possible approach is to insert explicit synchronization around the statements containing
the data dependence. Unfortunately, the presence of synchronization within the body of
the loop would then be separate from the implementation of the loop, which is where
we choose whether to exploit parallelism. To apply our general technique of moving the
synchronization into a control construct, we must split the body of the loop and expose
the dependence in the definition of the construct. We create a construct that accepts the
loop in three pieces, corresponding to the statements that can execute in parallel before
and after the data dependence, and the statements containing the data dependence.

define forall3
(lower, upper: integer;

head, body, tail: closure (iteration: integer))

] forall3 (lower, upper, head, body, tail) -+ J, head (i)
[i : lower < i < head]

t head (i) — i body (i) [i ; lower < i < head]
T body C *) -» J tail (i) [i : lower < i < head]
I body (j) — J body (i+ I) [i ■ lower < i < head]
[tail (i) -► tforall3 (lower, upper, head, body, tail)

[i : lower < i < head]

The implementation must execute head, before body, before tail, and execute body, before
body,+i. Using this control abstraction, we can rewrite the original loop as follows:

forall3 (1, N, (i: integer) { statement list 1 },
(i: integer) { x := a[i]; a[i+l] := y },
(i: integer) { statement list 2 >)

28

This control construct admits a parallel implementation wherein the head's and tail's
all execute in parallel.

implement forall3 $DIVIDED
(lower, upper: integer;

head, body, tail: closure (iteration: integer))
{ var blocking: array [lower..upper+1] of semaphore;

signal blocking [lower];
forall $DIVIDED (lower, upper, (i: integer)

{ head (.') ; wait blocking [i];
body (i); signal blocking[i+l];
tail (i) }) }

An alternative implementation that avoids the use of explicit synchronization and results
in slightly different parallelization is as follows:

implement forall3 $PHASED
(head, body, tail: closure (iteration: integer))

{ forall $DIVIDED (lower, upper, head);
for (lower, upper, body); always sequential
forall $DIVIDED (lower, upper, tail) }

The $DIVIDED implementation avoids phases and admits more parallelism, but because it
uses blocking synchronization primitives, may be less efficient. The programmer can decide
if the benefit of the extra parallelism is worth its cost.

9 Programming Methodology

Abstraction reduces the cost of any program changes that may arise while debugging, port-
ing, and enhancing programs. Programmers are generally aware of the benefits and costs of
data abstraction, but not of control abstraction. Just as the introduction of data abstrac-
tion requires a change in programming methodology, so does the introduction of control
abstraction. This section presents a methodology for using control abstraction in parallel
programs to achieve architectural adaptability.

Abstract Early Abstracting early is a good principle in sequential programming because
it delays commitment [Thimbleby, 1988]. which localizes the program's assumptions and re-
duces the effort needed to change a program. However, when programming sequentially, we
often do not use abstractions because there is a simple, natural, and obvious best implemen-
tation. The best implementation is usually obvious because most sequential machines share
the same von Neumann type architecture. In contrast, there are several common type ar-
chitectures [Snyder, 1986] for parallel machines. The performance of a given exploitation of
parallelism may vary widely among these type architectures. Abstraction helps adapt pro-
grams among different type architectures. Parallel programmers should resist implementing
prematurely, and rely on data and control abstraction.

29

In developing a program using control abstraction, the programmer needs to identify
the places where the algorithm organizes and schedules 'units of work'. The programmer
should encapsulate each of these 'organize and schedule' activities in a control construct.
For instance, a key control abstraction in Gaussian elimination is "select the pivot and
reduction equations". Its corresponding unit of work is "reduce an equation". So, we
should explicitly represent the "select" control abstraction with a control construct.

Where appropriate, programmers should use data abstractions that provide control ab-
stractions to manipulate the data. For example, we should program in terms of sets (data
abstraction) and parallel iteration over sets (control abstraction), rather than bit vectors
(data representation) and parallel scanning of bit vectors (representation-dependent con-
trol). The resultant program will be both easier to understand and easier to adapt to other
architectures.

Use Precise Constructs When the control constructs we use to specify parallelism do
not precisely express the parallelism appropriate to an algorithm, we must introduce explicit
synchronization to restrict excessive parallelism or we must accept less parallelism than the
algorithm permits.

Explicit synchronization needed to restrict excessive parallelem must be inserted or
removed depending on the choices made to exploit parallelism. This process can be error-
prone and can make adapting programs to different architectures difficult. Therefore, when
explicit synchronization is needed to implement control synchronization, it should appear
only in the implementation of control constructs, and never in the body of work passed to
a control construct. If, in the development of a program, it becomes necessary to introduce
synchronization into the body of work, the control construct should be redesigned to embed
the synchronization.

When using a control construct that provides more synchronization or serialization than
needed, we abandon potential parallelism. Constructs that maximize potential parallelism
leave more room for exploitation of parallelism and enhance our ability to adapt to new
architectures. We should use control constructs that provide the maximum potential par-
allelism allowed by the algorithm.

We should also choose control constructs that express precisely the parallelism and syn-
chronization that the algorithm requires, neither more nor less. When selecting an exploita-
tion of parallelism in such a construct, we implicitly select the appropriate synchronization.
If an implementation of a construct exploits no parallelism, it needs no synchronization,
and need not pay the overhead.

Expose Data Dependences Occasionally, the natural expression of control and its work
places a data dependence deep within the body of a loop, rather than at the beginning or
end. If we follow our previous advice and avoid explicit synchronization, this dependence
forces us to choose a control construct that provides more synchronization than the algo-
rithm actually requires. The solution is to break the body into separate bodies and then
use a construct that handles the multiple bodies. This more complex construct is also more
precise, which gives us more flexibility in exploiting parallelism.

30

We must balance the programming cost of splitting bodies of work against the likely pos-
sible architectures that may exploit the newly exposed parallelism. This balance depends
on the synchronization constraints within the construct and the likely size and number of
the units of work for the construct — small units of work with complex synchronization
constraints are unlikely to have efficient implementations on current architectures. This
observation applies to Gaussian elimination. In particular, synchronization constraints be-
tween pivot and reduction terms (rather than equations) are possible, but synchronizing
each multiplication and subtraction pair introduces unacceptable overhead on most current
architectures.

Reuse Code Parallel programming is hard, so programmers should build on each other's
work where possible. A library of well-debugged data and control abstractions is the pro-
grammer's most effective productivity tool. If the programmer needs a reasonably common
control construct, it may appear in a library of constructs and their implementations. How-
ever, some control constructs will be algorithm-specific; no library will contain implemen-
tations for those constructs. The programmer must design and implement the construct.
However, the programmer need only code implementations as needed for the architecture
at hand, and need not code implementations for all architectures or possible exploitations
of parallelism. The set of implementations will expand during program tuning and porting.
Each implementation remains available for use later. In contrast, without control abstrac-
tion programmers tend to abandon previous exploitations of parallelism in the search for
the best exploitation for a given architecture. A program's investment in architectural
adaptability is primarily in the constructs it uses, and secondarily in the set of implemen-
tations for those constructs. Changing a construct is a serious undertakLig; using another
implementation of a construct is not.

Experiment with Annotations After developing a program using control abstraction,
the programmer must annotate each use of a control construct with the desired imple-
mentation. Initially, programmers simply make their best guesses, or leave the choice to
defaults or the compiler. Later, programmers must refine their annotations. In sequen-
tial programming, the code sections critical to performance, and the effect of optimiza-
tions on them, may not be at all obvious, and are often counter-intuitive [Bentley, 1982].
The critical code sections are even more unpredictable in parallel programming. Experi-
mental methods and program analysis tools [Eowler et ai, 1988; Mellor-Crummey, 1989;
LeBlanc et ai, 1990] will help parallel programmers determine the most efficient exploitation
of parallelism. When poor performance relates back to a control construct, the programmer
can easily choose an alternate implementation (use more or less parallelism and synchroniza-
tion) by changing the annotation to select an alternate implementation. The programmer
may then measure the effect of the new annotation on program performance.

31

10 Implementation

We showed the importance of control abstraction in parallel programming, and how to
exploit different grains of parallelism by selecting an appropriate implementation for each
control construct. Although descriptive power is an important property, programmers use
parallelism to improve performance. Any programming language that uses closures and
operation invocation to implement the most basic control mechanisms might appear to
sacrifice performance for express!billty. With an appropriate combination of language and
compiler, however, user-defined control constructs can be as efficient as languaged-defined
constructs. We now describe straightforward optimizations that reduce the execution cost
of these mechanisms.

Invocations as Procedure Calls Since an invocation may execute concurrently with its
caller after executing its reply, a conservative implementation of invocation provides a
separate thread of control for each invocation. This approach is prohibitively expen-
sive. We can reduce this cost by noting that operations that have no statements after
the reply have no opportunity for parallelism and have a partial order identical to reg-
ular procedures. We can therefore implement these operations as regular procedures.
Even though invocations are frequent, the vast majority have valid implementations
as procedure calls.

Delayed Replies In those cases where an operation replies early, it is often safe to delay
the reply until the invocation completes. This delay allows us to exploit the procedure
implementation once again. We can safely delay a reply if no statement following the
reply requires resources (such as synchronization variablesj that statements following
the invocation release. This situation is common and is the case in all our examples.
We cannot expect the compiler to always determine whether to delay a reply; so we
use two different forms of reply. One indicates that the compiler may delay an early
reply, and the other indicates that the compiler may not.

In-line Substitution Even if we are able to avoid creating a new thread of control for each
operation invocation, we may still pay the price of a procedure call for each invocation.
We can reduce overhead even further by statically identifying the implementation
of operations, which makes it possible to use in-line substitution. We can identify
implementations through static typing or through type analysis.

In-line substitution is especially important for the efficient execution of sequential con-
trol constructs. When the compiler can determine the implementation of a construct
statically, it can replace the invocation with the implementation, and propagate the
closure parameter through to its use. Using this technique, we can convert control
constructs using late replies into equivalent machine branch instructions.

Stack Allocation of Closures Closures in Smalltalk and Lisp require that thoir environ-
ments remain in existence for the lifetime of the closure. The standard implementa-
tion of closures uses heap allocation for all operation activations that contain closures.
Since the cost of dynamic allocation can be substantial, the widespread use of closures
could have severe performance implications.

32

There are at least three language-dependent approaches to reducing the cost of closure
environments. The first is to analyze the program to determine if a closure is used
after normal termination of its environment. If not, the compiler may allocate the
environment on an activation stack [Kranz et ai, 1986]. The second approach restricts
the assignment of closures, like Algol68 reference variables, such that the environment
is guaranteed to exist. The third approach, which we used in our implementation for
expedience, defines programs that invoke a closure after its environment has termi-
nated as erroneous. Each of these approaches enables stack allocation for closures,
«ignificantly reducing the overhead associated with their use.

Direct Scheduler Access Note that the presence of an implementation for a control con-
struct, such as forall, using our mechanisms does not imply that a programming sys-
tem must use the implementation. In particular, implementations of forall are most
efficient when they can directly manipulate scheduler queues. We expect that pro-
gramming systems will provide implementations of very common control constructs
that are integrated with the scheduler.

Last-In-First-Out Scheduling In executing a program based on our model, we may
think of a tree of parallel task where each reply generates a branch in the tree. Normal
FIFO scheduling strategies will traverse this tree of tasks in a breadth-first manner.
In a breadth-first execution, the number of active nodes grow very quickly. Their
representation will quickly consume the entire storage of almost any machine.

The typical solution to this problem is to use a LIFO scheduling queue [Halstead,
1990], which encourages a depth-first execution and the number of active nodes is
relatively small. When a processor has an empty scheduling queue, it takes tasks
from other processor's queues. In contrast to Concert Multilisp and Mul-T, we take
tasks least recently enqueued rather than most recently enqueued. This provides
minimal impact on the locality of busy processors.

Using these optimizations, our prototype implementation of Matroshka [Crowl, 1988]
produces sequential code comparable to that produced by a C compiler without optimiza-
tion. Our prototype performs only the most basic optimizations and Matroshka programs
execute at half the rate of comparable C programs compiled with an optimizing compiler.
Four additional low-level optimizations bring Matroshka execution times to within 2% of
comparable C programs. We expect that a production compiler for Matroshka would be
competitive with an optimizing C compiler.

11 Conclusions

Previous approaches to architectural adaptability separate potential parallelism from ex-
ploited parallelism via multiple implementations for predefined control constructs or mech-
anisms. We extend this work with control abstraction, which enables multiple implementa-
tions for user-defined control constructs.

With control abstraction, programmers are not limited to a fixed set of control con-
structs. Users can create new constructs that express arbitrary partial orders of invocations

and store them in a library for use by others. We presented a model of parallel programming
based on a small set of primitive mechanisms for control abstraction and showed how the
model can directly implement common parallel control constructs.

With the ability to define algorithm-specific control constructs, we can more precisely
represent the potential parallelism within an algorithm. Each control construct can have
multiple implementations, each of which exploits a different subset of the potential paral-
lelism defined by the construct. Selecting different implementations of a construct at its
points of use exploits different sources of parallelism within a program. By embedding syn-
chronization in the implementation of control constructs, separate from the program logic,
programmers select parallelism and synchronization simultaneously.

We showed how to use control abstraction to achieve architectural adaptability in ex-
plicitly parallel programs. In developing adaptable programs, programmers must identify
potential control constructs, ensuring that they encapsulate any necessary synchronization.
Programmers adapt parallel programs by selecting an implementation for each use of a
construct and then experimentally measuring the effect. Programmers can choose among
existing implementations of a construct or build new implementations as needed. The set of
implementations will expand during program tuning and porting, leaving different exploita-
tions documented within the source. In addition, we have presented several optimizations
that facilitate an efficient implementation of control abstraction. Based on our experience,
we believe the benefits and reasonable cost of control abstraction argue for its inclusion in
explicitly parallel programming languages.

Acknowledgements

We thank Alan L. Cox, Robert J. Fowler, Cesar A. Quiroz, Michael L. Scott and Jack E.
Veenstra for their many helpful comments during the development of this paper.

34

References

[Albert et ai, 1988] Eugene Albert, Kathleen Knobe, Joan D. Lukas, and Guy L. Steele, Jr.,
"Compiling Fortran 8x Array Features for the Connection Machine Computer System,"
In Proceedings of the ACM/SIGPLAN PPEALS 1988, pages 42-56, July 1988, appeared
in ACM SIGPLAN Noticies 23(9), September 1988.

[Andrews et ai, 1988] Gregory R. Andrews, Ronald A. Olsson, Michael H. Coffin, Irving
J. P. Elshoff, Kelvin Nilsen, Titus Purdin, and G. Townsend, "An Overview of the SR
Language and Implementation," ACM Transactions on Programming Languages and
Systems, 10(l):51-86, January 1988.

[Bentley, 1982] Jon Louis Bentley, Writing Efficient Programs, Software Series. Prentice-
Hall Inc., 1982.

[Black et ai, 1986] Andrew P. Black, Norman Hutchinson, Eric Jul, Henry Levy, and Larry
Carter, "Distribution and Abstract Types in Emerald," IEEE Transactions on Software
Engineering. December 1986.

[Budd, 1984] Timothy A. Budd, "An APL Compiler for a Vector Processor," ACM Trans-
actions on Programming Languages and Systems, 6(3):297-313, '•■■■.,! 1984.

[Burton, 1984] F. Warren Burton, "Annotations to Control Parallelism and Reduction
Order in the Distributed Evaluation of Functional Programs," ACM Transactions on
Programming Languages and Systems, 6(2):159-174, April 1984.

[Coffin and Andrews, 1989] Michael H. Coffin and Gregory R. Andrews, "Towards
Architecture Independent Parallel Programming," Technical Report 89-21a, Department
of Computer Science, University of Arizona, September 1989.

[Costanzo et ai, 1986] John Costanzo, Lawrence A. Crowl, Laura Sanchis, and Mandayam
Srinivas. "Subgraph Isomorphism on the BBN Butterfly Multiprocessor," Butterfly
Project Report 14, Computer Science Department, University of Rochester. October
1986.

[Crowl, 1988] Lawrence A. Crowl. "A Uniform Object Model for Parallel Programming."
In Proceedings of the ACM SIGPLAN Workshop on Object-Based Concurrent Program-
ming, pages 25-27, September 1988, appeared in ACM SIGPLAN Notices 24(4), April
1989.

[Crowther et a/., 1985] W. Crowther, J. Goodhue, E. Starr, R. Thomas, W. Milliken, and
T. Blackadar, "Performance Measurements on a 128-Node Butterfly Parallel Processor,"
In Proceedings of the International Conference on Parallel Processing, pages 531-540,
August 1985.

[Fowler et ai, 1988] Robert J. Fowler, Thomas J. LeBlanc, and John M. Mcllor-Crummey,
"An Integrated Approach to Parallel Program Debugging and Performance Analysis on
Laige-Scale Multiprocessors," In Proceedings of the ACM SIGPLAN and SIGOPS Work-
shop on Parallel and Distributed Debugging, pages 163-173, May 1988.

35

[Goldberg and Robson, 1983] Adele Goldberg and David Robson, Smalltalk-80, The Lan-
guage and Its Implementation, Addison-Wesley Publishing Company, Reading, Mas-
sachusetts, 1983.

[Goldman et ai, 1990] Ron Goldman, Richard P. Gabriel, and Carol Sexton, "Qlisp: An
Interim Repoit," In Takayasu Ito and Robert H. Halstead, Jr., editors, Parallel Lisp:
Languages and Systems, number 441 in Lecture Notes in Computer Science, pages 161-
181. Springer-Verlag, 1990, the Proceedings of the US/Japan Workshop on Parallel Lisp,
Sendai, Japan, June 1989.

[Halstead, 1985] Robert H. Halstead, Jr., "Multilisp: A Language for Concurrent Symbolic
Computation," ACM Transactions on Programming Languages and Systems, 7(4):501-
538, October 1985.

[Halstead, 1990] Robert H. Halstead, Jr., "New Ideas in Parallel Lisp: Language Design,
Implementation, and Programming Tools," In Takayasu Ito and Robert H. Halstead, Jr.,
editors. Parallel Lisp: Languag 's and Systems, number 441 in Lecture Notes in Computer
Science, pagps 2-57. Springer-Verlag, 1990, the Proceedings of the US/Japan Workshop
on Parallel Lisp, Sendai, Japan, June 1989.

[Harrison and Notkin, 1990] Gail Harrison and David Notkin, "Effective Parallel Portabil-
ity," Technical Report 89-09-08 (revised). Department of Computer Science and Engi-
neering, University of Washington, January 1990.

[Hudak, 1986] Paul Hudak, "Para-Functional Programming," Computer, 19(8):60-70, Au-
gust 1986.

[Hudak, 1988] Paul Hudak, "Exploring Parafunctional Programming: Separating the What
from the How," IEEE Software, 5(1):54-61, January 1988.

[Kranz et al, 1986] David Kranz, Richard Kelsey, Jonathan Rees, Paul Hudak, James
Philbin, and Norman Adams, ORBIT: An Optimizing Compiler for Scheme," In Pro-
ceedings of the SIGPLAN '86 Symposium on Compiler Construction, pages 219-233, June
1986, in SIGPLAN Notices 21(7), July 1986.

[Lampson and Redell, 1980] Butler W. Lampson and David D. Redcll, "Experience with
Processes and Monitors in Mesa," Communications of the ACM, 23(2):105-118, February
1980.

[LeBlanc, 1986] Thomas J. LeBlanc, "Shared Memory Versus Message-Passing in a
Tightly-Coupled Multiprocessor: A Case Study," In Proceedings of the 1986 Interna-
tional Conference on Parallel Processing, pages 463-466, August 1986, also appeared
as Butterfly Project Report 3, Computer Science Department, University of Rochester,
January 1986.

[LeBlanc, 1988] Thomas J. LeBlanc, "Problem Decomposition and Communication Trade-
offs in a Shared-Memory Multiprocessor," In Martin Schultz, edito;, Numerical Al-
gorithms for Modern Parallel Computer Architectures, number 13 in IMA Volumes in
Mathematics and its Applications, pages 145-163. Springer-Verlag, 1988.

36

[LeBlanc et ai, 1990] Thomas J. LeBlanc, John M, Mellor-Crummey,, and Robert J. Fowler,
■'Analyzing Parallel Program Executions Using Multiple Views,'' Journal of Parallel anl
Disiributed Computing, 9(2):203-217, June 1990.

[Liskov et a/., 1986] Barbara R. Liskov, Maurice P. Herlihy, and Lucy Gilbert, "Limita-
tions of Synchronous Communication with Static Process Structire in Languages foi
Distributed Computing," In Conference Record of the Thirteenth Annual ACM Sympo-
sium on Principles of Programming Languages, pages 150-159, January 1980.

[Liskov et ai, 1977] Barbara H. Liskov, Alan Snyder, R. R. Atkinson, and J. C. Schaffert
"Abstraction Mechanisms in CLU," Communications of the ACM, 20(8):564-576, August
1977.

[Low, 1976] James R. Low, Automatic Coding: Choice of Data Structures, Number 16 i;a
Interdisciplinary Systems Research. Birkhäuser Verlag, Basel and Stuttgart, 1976.

[Mellor-Crummey, 1989] John M. Mellor-Crummey, "Debugging and Analysis of Large-
Scale Parallel Programs," Technical Report J12, Computer Science Department, Univer-
sity of Rochester, September 1989, Ph.D. Dissertation.

[Miller and Stout, 1989] Russ Miller and Quentin F. Stout, "An Introduction to the
Portable Parallel Programming Language Seymor," In Proceedings of the Thirteenth
Annual International Computer Software and Applications Conference, pages 94-101.
IEEE Computer Society, September 1989.

[Sabot, 1988] Gary Wayne Sabot, The Paralation Model: Architecture-Independent Parallel
Programming, MIT Press, 1988.

[Scott, 1987] Micha'! L. Scott, "Language Support for Loosely-Coupled Distributed Pro-
grams," IEEE Transactions on Soßware Engineering, SE-13(1):88-103, January 1987.

[Snyder, 198-1] Laurence Snyder, "Parallel Programming and the Poker Programming En-
vironment," Computer, 17(7):27-36, July 1984.

[Snyder, 1986] Lawrence Snyder, "Type Architectures. Shared Memory and the Corollary
of Modest Potential," Technical Report 86-03-04, Department of Computer Science,
University of Washington, Seattle, Washington, 98195, March 1986.

[Steele, 1984] Guy L. Steele, Jr., Common Lisp: The Language, Digital Press, 1984.

[Steeie and Hillis, 1986] Guy L. Steele, Jr. and W. D. Hillis, "Connection Machine Lisp:
Fine-Grained Parallel Symbolic Processing," In Proceedings of the 1986 ACM Conference
on Lisp and Functional Programming, pages 279-297, August 1986.

[Thimbleby, 1988] Harold Thimbleby, "Delaying Commitment," IEEE Software. 5(3):78-
86, May 1988.

[Thomas, 1985] R. Thomas, "Using the Butterfly to Solve Simultaneous Linear Equations,"
Butterfly Working Group Note 4, BBN Laboratories, March 1985.

37

[Thomas, 1986] R.Thomas, "The Uniform System Approach to Programming the Butterfly
Parallel Processor," BEN Report No. 6149, BBN Advanced Computers Inc., June 1986.

[Ullman, 1976] J. R. Ullman, "An Algorithm for Subgraph Isomorphism," Journal of the
.4CA/, 23:31-42, 1976.

38

